Methylene diphenyl diisocyanate;

Schuetze D, Sepai O, Lewalter J, Miksche L, Henschler D, Sabbioni G (1995) Biomonitoring of workers exposed to 4,4’-methylenediamine and 4,4’-methylenediphenyl diisocyanate. , 16(3): 573–582.

Methylene diphenyl diisocyanate, most often abbreviated as MDI, is an aromatic diisocyanate

Tinnerberg H, Spanne M, Dalene M, Skarping G (1997) Determination of complex mixtures of airborne isocyanates and amines, Part 3. Methylenediphenyl diisocyanate, methylenediphenylamino isocyanate and methylenediphenylamine and structural analogues after thermal degradation of polyurethane. , 122:275–278.


Diphenylmethane 4,4'-diisocyanate CAS 101-68-8 | …

Reidy TJ, Bolter JF (1994) Neuropsychological toxicology of methylene diphenyl diisocyanate: a report of five cases. , 8(3):285–294.

Day BW, Basalyga DM, Kramarik JA, Karol MH (1997) Formation, solvolysis and transcarbamoylation reactions of bis(-glutathionyl) adducts of 2,4- and 2,6-diisocyanatotoluene. , 10:424–431.


for the production of methylene diphenyl diisocyanate ..

A library of block copolymers was synthesized by varying the molecular weight of the poly(epsilon-caprolactone) (PCL)-diol soft segment (M-w = 850, 3050, 3700 or 7000), which was reacted with methylene diphenyl diisocyanate (MDI), 1,4-phenylene diisocyanate (PDI), 1,1'-methylenebis(4-isocyanatocyclohexane) (HMDI), or 2,4-toluene diisocyanate (TDI) with 1,4-butanediol (BD) or ethylene glycol (EG) added as chain extenders. Thermal and X-ray measurements indicated that the crystalline structure of the copolymers was largely dependent on the chain length of the PCL-diol, with no crystallization taking place with the smallest diol (M-w = 850) using MDI, TDI or HMDI. However, the copolymers produced from a PCL-diol (M-w = 850) and PDI and chain extenders (BD or EG) showed resolved crystalline peaks while no peaks appeared with other diisocyanates. Hydrolytic degradation studies demonstrated a faster degradation rate in the case of more amorphous copolymers than semi-crystalline copolymers. The cellular compatibility of the copolymers was evaluated by fabricating the entire library of polymers in a microarray format and in vitro cell culture, demonstrating that all the 57 copolymers supported cellular attachment and growth.

1,4-butanediol, and methylene diphenyl diisocyanate

N2 - A library of block copolymers was synthesized by varying the molecular weight of the poly(epsilon-caprolactone) (PCL)-diol soft segment (M-w = 850, 3050, 3700 or 7000), which was reacted with methylene diphenyl diisocyanate (MDI), 1,4-phenylene diisocyanate (PDI), 1,1'-methylenebis(4-isocyanatocyclohexane) (HMDI), or 2,4-toluene diisocyanate (TDI) with 1,4-butanediol (BD) or ethylene glycol (EG) added as chain extenders. Thermal and X-ray measurements indicated that the crystalline structure of the copolymers was largely dependent on the chain length of the PCL-diol, with no crystallization taking place with the smallest diol (M-w = 850) using MDI, TDI or HMDI. However, the copolymers produced from a PCL-diol (M-w = 850) and PDI and chain extenders (BD or EG) showed resolved crystalline peaks while no peaks appeared with other diisocyanates. Hydrolytic degradation studies demonstrated a faster degradation rate in the case of more amorphous copolymers than semi-crystalline copolymers. The cellular compatibility of the copolymers was evaluated by fabricating the entire library of polymers in a microarray format and in vitro cell culture, demonstrating that all the 57 copolymers supported cellular attachment and growth.

4,4’-diphenyl methane diisocyanate ..

AB - A library of block copolymers was synthesized by varying the molecular weight of the poly(epsilon-caprolactone) (PCL)-diol soft segment (M-w = 850, 3050, 3700 or 7000), which was reacted with methylene diphenyl diisocyanate (MDI), 1,4-phenylene diisocyanate (PDI), 1,1'-methylenebis(4-isocyanatocyclohexane) (HMDI), or 2,4-toluene diisocyanate (TDI) with 1,4-butanediol (BD) or ethylene glycol (EG) added as chain extenders. Thermal and X-ray measurements indicated that the crystalline structure of the copolymers was largely dependent on the chain length of the PCL-diol, with no crystallization taking place with the smallest diol (M-w = 850) using MDI, TDI or HMDI. However, the copolymers produced from a PCL-diol (M-w = 850) and PDI and chain extenders (BD or EG) showed resolved crystalline peaks while no peaks appeared with other diisocyanates. Hydrolytic degradation studies demonstrated a faster degradation rate in the case of more amorphous copolymers than semi-crystalline copolymers. The cellular compatibility of the copolymers was evaluated by fabricating the entire library of polymers in a microarray format and in vitro cell culture, demonstrating that all the 57 copolymers supported cellular attachment and growth.