The chemical reactions involved include: ..

Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in total binding energy (i.e., the sum of all bond energies in the set of molecules) that are matched by changes in kinetic energy. In many situations, a dynamic and condition-dependent balance between a reaction and the reverse reaction determines the numbers of all types of molecules present.

This chemical reaction can be described by the following simple equation:

The existence of atoms, now supported by evidence from modern instruments, was first postulated as a model that could explain both qualitative and quantitative observations about matter (e.g., Brownian motion, ratios of reactants and products in chemical reactions). Matter can be understood in terms of the types of atoms present and the interactions both between and within them. The states (i.e., solid, liquid, gas, or plasma), properties (e.g., hardness, conductivity), and reactions (both physical and chemical) of matter can be described and predicted based on the types, interactions, and motions of the atoms within it. Chemical reactions, which underlie so many observed phenomena in living and nonliving systems alike, conserve the number of atoms of each type but change their arrangement into molecules. Nuclear reactions involve changes in the types of atomic nuclei present and are key to the energy release from the sun and the balance of isotopes in matter.


Chemical Reactions Involved in the Growth of Plants | …

This chemical reaction is catalyzed by  acting in concert with other pigment, lipid, sugars, protein, and nucleic acid molecules.

Many substances react chemically with other substances to form new substances with different properties. This change in properties results from the ways in which atoms from the original substances are combined and rearranged in the new substances. However, the total number of each type of atom is conserved (does not change) in any chemical process, and thus mass does not change either. The property of conservation can be used, along with knowledge of the chemical properties of particular elements, to describe and predict the outcomes of reactions. Changes in matter in which the molecules do not change, but their positions and their motion relative to each other do change also occur (e.g., the forming of a solution,


temperature and chemical concentration

The historical division between the two subjects of physics and chemistry is transcended in modern science, as the same physical principles are seen to apply from subatomic scales to the scale of the universe itself. For this reason we have chosen to present the two subjects together, thereby ensuring a more coherent approach to the core ideas across all grades. The designation of physical science courses at the high school level as either physics or chemistry is not precluded by our grouping of these disciplines; what is important is that all students are offered a course sequence that gives them the opportunity and support to learn about all these ideas and to recognize the connections between them.

Chemistry for Biologists: Photosynthesis

ost systems or processes depend at some level on physical and chemical subprocesses that occur within it, whether the system in question is a star, Earth’s atmosphere, a river, a bicycle, the human brain, or a living cell. Large-scale systems often have emergent properties that cannot be explained on the basis of atomic-scale processes; nevertheless, to understand the physical and chemical basis of a system, one must ultimately consider the structure of matter at the atomic and subatomic scales to discover how it influences the system’s larger scale structures, properties, and functions. Similarly, understanding a process at any scale requires awareness of the interactions occurring—in terms of the forces between objects, the related energy transfers, and their consequences. In this way, the physical sciences—physics and chemistry—underlie all natural and humancreated phenomena, although other kinds of information transfers, such as those facilitated by the genetic code or communicated between organisms, may also be critical to understanding their behavior. An overarching goal for learning in the physical sciences, therefore, is to help students see that there are mechanisms of cause and effect in all systems and processes that can be understood through a common set of physical and chemical principles.

Is Photosynthesis A Chemical Reaction? - YouTube

Each element has characteristic chemical properties. The periodic table, a systematic representation of known elements, is organized horizontally by increasing atomic number and vertically by families of elements with related chemical properties. The development of the periodic table (which occurred well before atomic substructure was understood) was a major advance, as its patterns suggested and led to the identification of additional elements with particular properties. Moreover, the table’s patterns are now recognized as related to the atom’s outermost electron patterns, which play an important role in explaining chemical reactivity and bond formation, and the periodic table continues to be a useful way to organize this information.