Dielectric barrier discharge plasma actuator study for …

Last part of this thesis is concerned with a demonstrative application of a ns-DBD plasma actuator on a two element airfoil, at Reynolds numbers ranging between 0.2·106 and 2 ·106.

Once identified the thermal gradient as the main cause of flow control mechanism, a characterization study was performed aimed to identify the properties of a ns-DBD plasma actuator (thermal, electrical and geometrical) important tomaximize the induced thermal gradient within the discharge volume.


Santini Christmas - Dielectric Barrier Discharge Thesis …

Cazalens, "Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control", Exp.


Preparation of graphene in dielectric barrier discharge …

At the tube outlet, the electron density and atomic oxygen concentration are one decade higher in the case of the dielectric barrier discharges (DBDs) plasma jet while Trot is higher in the case of the MW plasma jet. These differences are mainly due to the way of plasma generation. Indeed, the guided-ionization waves generated by the DBD setup cause higher nonequilibrium phenomena since the difference between Trot and Texc is shown to be much larger in the DBD case. Furthermore, at the tube outlet, it is shown that UVC irradiance produced by the MW plasma jet is about twice as large as that of the DBD plasma jet. However, at 1.7 cm away from the tube outlet, the differences between the two plasma setups on temperatures and active species production become less significant. For instance, the plasma gas temperature measured with a thermocouple becomes the same (320 K) showing the ability of both plasma setups to be used inbiomedical applications without inducing a significant thermal effect.

Preparation of graphene in dielectric barrier discharge ..

Two low-temperature plasma jets using argon carrier gas at atmospheric pressure have been experimentally characterized using optical emission diagnostics. The first one is a double dielectric barrier discharge (DBD) plasma jet generated by a pulsed power supply (9 kV , 9.69 kHz, duty cycle: 1%) and the second one is a microwave (MW) induced plasma jet (2.45 GHz, 40 W ). The argon gas (4.5 purity) flowing through the quartz tube used to launch the plasma in open air is kept at 1 L/min for both plasma devices. Some thermodynamic parameters such as rotation (Trot) and excitation (Texc) temperatures have been determined as well as some plasma active species such as electron density, ultraviolet C (UVC) irradiance, and atomic oxygen concentrations. Most of these plasma parameters are spatially resolved along the plasma jet axis using the spectra of atomic lines (Ar and O) in the visible range and molecular bands (N₂ and OH) in the UV range.