Under the following conditions:

First, his experimentalist coworkers questioned Schulten's pure theoretical approach, which only made him improve his methods; there were also lots of good-natured jokes about him being a theoretician. Second, Schulten figured out how to apply a critical eye to experiment. “You need to know what are they doing, how are they doing it, who are the good people, and who are the not-so-good,” Schulten remarks. “So somehow you need to develop a working relationship.” Third, he learned about key directions in the field and heard about cutting-edge experiments while at the institute. In short, his time in Göttingen was not only productive in terms of research, but also because he made many contacts, with experimentalists in particular.

Also, energy from the plants is utilized in fixing carbon dioxide and converting it to sugar.

There is no doubt that the carbon dioxide increase is anthropogenic. The circumstantial evidence is strong. Human population increases track carbon dioxide increases. However, there is proof. Carbon dioxide circulating between plants, animals and the atmosphere is made slightly radioactive in the upper atmosphere by the sun. Carbon dioxide formed by burning fossil fuels is not radioactive because the carbon has not been in the upper atmosphere for millions of years. That makes it possible to distinguish anthropogenic fossil fuel derived carbon dioxide from the carbon dioxide circulating between plants and animals by measuring its radioactivity.

Barnes PW, Flint SD, Tobler MA, Ryel RJ.

It is a complex process, but can be represented in a simplified reaction form.

This period of time in Schulten's group, from about 1995 to 2000, still stands out as one of the most impressive eras of achievement in Schulten's mind. It started with Xiche Hu and his relentless efforts to solve the structure of LH2, and then ended with Thorsten Ritz and Ana Damjanović. The pair basically sorted out the key physical characteristics that nature had designed to effectively absorb sunlight, to keep it for a short while and transfer it effectively to other pigment subsystems in the so-called photosynthetic light harvesting system.

Photosynthesis/Cellular Respiration Flashcards | Quizlet

“The data not only confirmed our hypothesis but also revealed that the excited-state charge separation occurs much more rapidly than we had imagined,” said Manbeck. “In fact, the charge migration happens faster than the time resolution of our instrument, and probably involves short-lived, high-energy excited states.” The researchers plan to seek a collaborator with faster instrumentation who can measure the exact rate of charge separation to help clarify the mechanism.

Evolution of photosynthesis - Wikipedia

“The high photocatalytic turnover of the heptametallic system and the principles governing charge separation that were uncovered in this work encourage further studies using multiple light-harvesting units linked to single catalytic sites,” said Manbeck.

Before photosynthesis evolved, ..

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit .

Biology 1001 Exam 2 practice questions Flashcards | Quizlet

They verified their hypothesis with a time-resolved technique called nanosecond transient absorption spectroscopy, in which a molecule is promoted to an excited state by an intense laser pulse and the decay of the excited state is measured over time. The resulting spectra revealed the presence of a Ru-to-Rh charge transfer in the heptametallic system only.