Photochemistry: Theoretical Concepts and Reaction Mechanisms

The finite element method and its applications to engineering problems: truss and frame structures, heat conduction, and linear elasticity; use of application software; overview of advanced topics such as structural dynamics, fluid flow, and nonlinear structural analysis.

Advances in Mathematical Sciences and Applications, Japon, Journal of Convex Analysis, Germany,

Analyse, design and document computer network specifications to meet client needs. Perform help desk functions to answer user questions and provide user training on application software and fundamental operating systems functions.

Singlet Oxygen: Generation and Properties - photobiology

This laboratory provides hands on experience of applications of computer based tools in Biotechnology for its application in drug discovery

The course aims at providing an understanding about biological systems as templates in the development of nano scale products and their biological responses, understanding of emerging Nanotechnologies, nanolebels, nanobiosencers and nanomedicine , techniques and synthesis of nanobiomolecules and their applications in biomedical field.

Photochemistry - Share and Discover Knowledge on …

The purpose of the course is to develop an understanding of independent research through the study of a particular Mechanical Engineering topic of interest. The special project is an exercise in the professional application of specialist skills and experience developed in Mechanical Engineering program. Research topics, which may be principally experimental, theoretical or applied, will be chosen in consultation with a project supervisor.

Photosynthesis-to-fuels: from sunlight to hydrogen, …

Janusz Lewiński was born in 1956 in Poland. He did his undergraduate and doctoral studies at Warsaw University of Technology, and received Ph.D. degree in 1989 under the supervision of Professor S. Pasynkiewicz. Then he joined the Department of Homogeneous Catalysis and Organometallics at the same University, where he first developed his interest in organometallic chemistry, in particular the chemistry of the group 13 elements, and helped to pioneer the 27Al NMR spectroscopy in the identification of aluminium complexes. In 2001 he completed habilitation, and in 2007 he was appointed full professor at Warsaw University of Technology, where he is now Head of Organometallic and Functional Materials Laboratory. In 2007 accepted a similar position at the Institute of Physical Chemistry of Polish Academy of Science.

He spent periods as a visiting scientist and lecturer at the University van Amsterdam (Host: Prof. G. van Koten and Prof D. J. Stufkens), the Rice University, Houston (Host: Prof. A. R. Barron), and the Cambridge University (Host: Prof. A. E. H. Wheathley). His awards include, amongst others, the 2000 Polish Chemical Society′s Kemula Prize and the 2008 Sklodowska-Curie Award of Polish Academy of Science for his scientific activity in the field of organometallic chemistry.

His research addresses fundamental and applied aspects of the main group metals chemistry and is aimed at understanding the relationships between the structure, reactivity and desired functionality of various entities. He made seminal advances in the understanding of the reactivity of metal-carbon bonds in the group 12 and 13 organometallics, probing their activation of dioxygen. Aside from any fundamental curiosity concerning the structure characterization of the first aluminium and zinc alkylperoxides, a hypothesis concerning the reaction mechanism of metal alkyls with O2 was significantly advanced. His group revealed also a long overlooked decomposition pathway of zinc alkylperoxides via homolysis of the O-O bond which is responsible for the formation of oxo complexes. In this connection, he has also invented novel and efficient routes to polymer-coated zinc oxide nanoparticles for biomedical applications.

His other topics of research concern the field of supramolecular chemistry, crystal engineering and fabrication of hybrid organic–inorganic functional materials like coordination polymers based on organometallic nodes or open metal–organic frameworks with controllable size and morphology with potential applications in storage and separation of gases and small organic molecules.